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Abstract
This paper presents an innovative approach, the Adaptive Orthogonal Basis Method, tailored
for computing multiple solutions to differential equations characterized by polynomial non-
linearities. Departing from conventional practices of predefining candidate basis pools, our
novel method adaptively computes bases, considering the equation’s nature and structural
characteristics of7 the solution. It further leverages companion matrix techniques to generate
initial guesses for subsequent computations. Thus this approach not only yields numerous
initial guesses for solving such equations but also adapts orthogonal basis functions to effec-
tively address discretized nonlinear systems. Through a series of numerical experiments, this
paper demonstrates the method’s effectiveness and robustness. By reducing computational
costs in various applications, this novel approach opens new avenues for uncovering multiple
solutions to differential equations with polynomial nonlinearities.
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1 Introduction

In numerous mathematical models, particularly those involving nonlinear differential equa-
tions derived from real-world problems, the presence of nontrivial multiple solutions is a
common occurrence. These multiple solutions frequently have direct relevance to practical
applications [6, 10, 27]. However, it is widely acknowledged that providing explicit solutions
in such cases is exceedingly challenging. As a result, researchers from around the globe often
opt for the pursuit of numerical solutions. Therefore, the advancement and investigation of
efficient numerical methods for the computation of multiple solutions take on paramount
significance.

To the best of our knowledge, algorithms for computing multiple solutions can be broadly
categorized based on the presence of a variational structure. Specifically, when dealing with
differential equations possessingmultiple solutions, the associated variational structure plays
a pivotal role in shaping the algorithm’s design for uncovering these multiple solutions. In
1993, Choi and McKenna introduced the mountain pass algorithm (MPA) for addressing
multiple solutions in semilinear elliptic problems, drawing upon the mountain pass lemma
in functional analysis [5]. Subsequently, Xie et al. [31] highlighted the MPA’s applicability
in locating two solutions of mountain pass type, characterized by a Morse index of 1 or 0.
In a different vein, Ding et al. underscored the MPA’s limitation in computing sign-changing
solutions and introduced a high linking algorithm (HLA) tailored to address such cases [7].
Building on the foundational work of Choi, Ding, and others, in 2001, Zhou et al. proposed
a local minimax method (LMM) inspired by the concepts presented in [5, 7]. The LMM
characterizes a saddle point as a solution to a local minimax problem, offering another
valuable approach to tackle multiple solution scenarios [18]. To be specific, Let J (u) be a
generic energy functional of differential equations with multiple solutions, and J (u) is a C1-
functional on a Hilbert space H . Here it is worth pointing out that the solutions to differential
equations with multiple solutions correspond to critical points of J (u), and there exist saddle
points belonging to critical points, where if u∗ is a saddle point of J , then we have

J (v) < J (u∗) < J (w), ∀v,w ∈ N (u∗, δ) := {u| ‖u − u∗‖ ≤ δ} ∈ H .

Based on the Morse index (MI) in the Morse theory, the LMM can obtain a saddle point with
MI = n (n ∈ N+) by considering a two-level local minimax problem as follow:

min
v∈SH

max
u∈[L,v] J (u), (1.1)

where SH := {v ∈ H | ‖v‖ = 1} is the unit sphere. L ⊂ H is a given (n − 1) dimensional
closed subspace, which can be constructed by some known critical points (or multiple solu-
tions). [L, v] := {tv +w| t ≥ 0, w ∈ L} represents a closed half subspace. Some numerical
algorithms can be conveniently implemented to solve (1.1). In the LMM, the steepest descent
direction is chosen as the search direction in the local minimization process, and more recent
advancements are presented in [33–35, 40]. In cases where numerous differential equations
exhibit multiple solutions without a discernible variational structure, the aforementioned
methods become inapplicable. This circumstance gives rise to the second category of exist-
ing techniques for computing multiple solutions. The general procedure involves selecting
certain numerical methods, such as the spectral method or finite difference method, to dis-
cretize the differential equations with multiple solutions. Subsequently, iterative methods
are employed to locate the multiple solutions of the resulting nonlinear algebraic system
(NLAS). In 2004, Xie at al. [4] proposed the search-extension method (SEM), where they
mainly considered the following nonlinear elliptic equations

123



Journal of Scientific Computing           (2024) 100:11 Page 3 of 28    11 

{
−�u + f (x, u) = 0, x ∈ �,

u = 0, on ∂�,
(1.2)

where � is a bounded domain in Rn with a corresponding boundary ∂�. In the search-
extension method, the following eigenvalue problem is firstly solved{

−�φ j = λ jφ j , in�,

φ j = 0, on ∂�,
(1.3)

where {λ j , φ j }( j = 1, 2, . . .) are its eigenpairs. Then the solution of (1.2) can be approxi-
mated by the following series:

u(x) =
N∑
j=1

a jφ j . (1.4)

Substituting (1.4) into (1.2) yields the NLAS, and it is solved by the Newton method. Obvi-
ously, we can observe that {φ j }∞j=1 from (1.3)–(1.4) are chosen to provide a good initial
approximation of u(x) in (1.2). However, here it is worth pointing out that if the nonlinear
term f (x, u) in (1.2) plays a leading role, the choice of {φ j }∞j=1 from (1.3)–(1.4) is not very
suitable for a good initial approximation u(x) in (1.2). As widely acknowledged, the Newton
method suffers from a significant drawback, namely, its sensitivity to the initial guess and the
conditioning of the Jacobian matrix. A recent study [20] introduced a promising alternative:
the trust-region method, effectively replacing the Newton method for computing multiple
solutions. This substitution not only significantly improved computational efficiency but
also successfully addressed the aforementioned issues.

Moreover, the deflation technique has been utilized for the computation of multiple solu-
tions [9]. It is worth noting that in this context, the deflation procedure may encounter
divergence problems evenwith a consistent initial guess.Additionally, an alternative approach
involves using a randomly generated deviation from an already obtained solution as the ini-
tial guess to locate other solutions. However, it’s crucial to highlight that these methods for
initializing the guess may not be the most suitable choices, primarily because they do not
adequately account for the underlying nonlinear characteristics inherent in the problem.

In addition, various other discretization approaches, such as finite difference methods,
reduced basis methods, and finite element methods, have been coupled with homotopy con-
tinuation methods for computing multiple solutions [1, 2, 15, 29, 38]. While it is true that
the computational complexity escalates with mesh densification, ensuring the discovery of
all solutions is of significant benefit. To address this challenge, a homotopy method with
adaptive basis selection has been introduced [16]. Furthermore, in an effort to reduce com-
putational costs in complex fields, companion matrix techniques have been leveraged for
generating initial guesses [13]. Meanwhile, within the framework of a constructed dynamic
system utilizing virtual time, the gentlest ascent dynamic (GAD) [41] and the constrained
gentlest ascent dynamic (CGAD) [30] were proposed for computing multiple solutions. Sub-
sequently, drawing inspiration from the shrinking dimer dynamic (SDD) [36], Zhang et al.
introduced the (high-index) optimization-based shrinking dimer approach [8, 39]. Addition-
ally, the bifurcation method [19, 32] was proposed for computingmultiple solutions, drawing
on principles from bifurcation theory.

In this paper, we mainly consider the following general differential equation with the
nonlinearity of polynomial type, i.e.,

Lu + Nu = 0, x ∈ �, (1.5)
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supplemented with some boundary conditions on ∂�, where � ∈ R
d is an open bounded

domain, u := (u1(x), u2(x), . . . , un(x))T is a vector function of x and L and N are linear
and nonlinear operator, respectively. Here the linear operatorLmaybe−� or other operators.
The nonlinear operator N := (N1(u),N2(u), . . . ,Nn(u))T is defined with nonlinearity of
polynomial type. In the currentwork,wemainly focus on the case n, d = 1 or 2. Traditionally,
in spectral methods, the selection of basis functions may not always be well-suited for a given
problem. Even though adaptive basis selection can help mitigate computational costs, it still
entails choosing froma potentially extensive pool of candidate bases, as discussed in [16]. The
core idea of this approach is to dynamically select the basis with the maximum residual based
on the current solution using a greedy algorithm. Thus this technique effectively constructs
a spectral approximation space tailored for nonlinear differential equations, and multiple
solutions are then computed using the homotopy continuation method within this lower-
dimensional approximation space.

In this paper, we expand upon the adaptive basis selection approach by introducing a
novel adaptive basis method that deviates from the conventional practice of predefining a
candidate basis pool. Instead, we dynamically compute the basis, taking into account both
the nature of the equation and the structural characteristics of the solution. More specifically,
we consider the polynomial nonlinearities within the differential equation and dynamically
compute the basis functions to approximate multiple solutions. Once the basis is computed,
we leverage companion matrix techniques, drawing inspiration from the work presented in
[13], to generate initial guesses for subsequent computation steps. This approach proves
to be more efficient than the homotopy tracking method introduced in [16]. Furthermore,
we utilize the spectral trust-region method as a nonlinear solver for solving the NLAS
[20].

The structure of this paper is as follows: In Sect. 2, we provide an introduction to the fun-
damental concepts of the spectral collocation method and the trust-region method. Section3
introduces a new and innovative algorithm for computing multiple solutions. In Sect. 4, we
present a comprehensive set of numerical experiments, discussing the efficiency and accuracy
of our algorithm. Finally, we conclude the paper in Sect. 5 with some closing remarks.

2 Preliminary

To enhance the clarity and structure of our algorithm description in Sect. 3, it is essential
to introduce some fundamental concepts. This section is divided into two parts: the first
part explains the Spectral Chebyshev-Collocation method, and the second part outlines the
trust-region method for iterating the resulting NLAS.

2.1 The Spectral Chebyshev-CollocationMethod

Themain idea of the Spectral Chebyshev-Collocationmethod is to use Lagrange interpolation
based on Chebyshev points to approximate the solution of (1.5). To account for boundary
conditions, the Chebyshev–Gauss–Lobatto points {x j }Nj=0 are often chosen. These points

{x j }Nj=0 are zeros of (1− x2)J 1/2,1/2N−1 (x) where J 1/2,1/2N−1 (x) represents the Jacobi polynomial
[24]. This choice of Chebyshev points results in the following equation:

x j = cos
jπ

N
, 0 ≤ j ≤ N . (2.1)
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when we denote the values of the approximated function u(x) at {x j }Nj=0 as

u = (u(x0), u(x1), . . . , u(xN ))T ,

the m-th derivative of u(x) at {x j }Nj=0 (denoted by u(m)) can be expressed as

u(m) = D · D · · · Du = Dmu,

Here, D is known as the (N + 1) × (N + 1) Chebyshev spectral differentiation matrix, and
its elements are as follows:

(D)00 = 2N 2 + 1

6
, (D)NN = −2N 2 + 1

6
,

(D) j j = −x j
2(1 − x2j )

, j = 1, . . . , N − 1,

(D)i j = ci
c j

(−1)i+ j

xi − x j
, i 
= j, i, j = 1, . . . , N − 1,

(2.2)

where

ci =
{
2, i = 0 or N ,

1, otherwise.

For the case when m = 2, D(2) := D2 = D · D can be derived, and its elements are as
follows:

(D(2))i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N4−1
15 , i = j = 0, i = j = N ,

− (N2−1)(1−x2i )+3

3(1−x2i )2
, 1 ≤ i = j ≤ N − 1,

2(−1) j

3c j
(2N2+1)(1−x j )−6

(1−x j )2
, i = 0, 1 ≤ j ≤ N ,

2(−1) j+N

3c j
(2N2+1)(1−x j )−6

(1+x j )2
, i = N , 0 ≤ j ≤ N − 1,

(−1)i+ j

c j

x2i +xi x j−2

(1−x2i )(xi−x j )2
, 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N , i 
= j .

(2.3)

Additionally, when differentiation matrices (e.g., (2.2) or (2.3)) are used for (1.5), they must
be combined with the corresponding boundary conditions (e.g., nonhomogeneous Dirichlet
boundary conditions, Neumann boundary conditions). For simplicity, we have not provided
these details here, and the reader is referred to [28] for more information.

To solve two-dimensional differential equations with multiple solutions, we extend the
Chebyshev spectral differentiation matrices (2.2)–(2.3) to two-dimensional cases. As an
illustrative example, we primarily focus on the Laplace operator (2.4), namely,

� = ∂2

∂x2
+ ∂2

∂ y2
. (2.4)

Indeed, the Kronecker product, a technique from linear algebra, offers a convenient way to
represent (2.4). Specifically, for the second derivative with respect to x in (2.4), the corre-
sponding Kronecker product is given by D(2) ⊗ I , where I represents the identity matrix.
This operation can be computed using the kron(D(2), I ) command in Matlab. Similarly, for
the second derivative with respect to y in (2.4), the Kronecker product becomes I ⊗ D(2).
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As a result, the discrete Laplace operator LN can be expressed as the Kronecker sum:

LN = D(2) ⊗ I + I ⊗ D(2).

This representation allows for the efficient computation of the Laplace operator in two-
dimensional cases.

2.2 The Trust RegionMethod for Iterating Nonlinear System

Following the numerical discretization, such as the spectral Chebyshev-Collocation method
discussed in Sect. 2.1, we obtain a nonlinear algebraic system represented as:

f = (
f1, f2, . . . , fn

)T
. (2.5)

Here, the unknown vector a = (a1, a2, . . . , an)T , with { fi }ni=1 being functions of a. Our
objective is to find a that satisfies f (a) ≡ 0 using an iterative method. We can rewrite the
system of nonlinear equations to a minimization problem below:

min
a∈Rn

Q(a), Q(a) := 1

2

∥∥ f (a)
∥∥2
2 = 1

2

n∑
i=1

f 2i (a). (2.6)

Consequently we have that for any a, f (a) ≡ 0 iff min Q(a) ≡ 0. In other words, we
can solve (2.6) to replace (2.5). First, we introduce the Jacobian matrix, the gradient, and the
Hessian matrix, which are defined as follows:

J(a) = f ′(a) = (∇ f1(a),∇ f2(a), . . . , ∇ fn(a))T ,

g(a) = ∇Q(a) = JT (a) f (a) and G(a) = ∇2Q(a) = JT (a)J(a) + S(a),

where S(a) = ∑n
i=1 fi (a)∇2 fi (a).

The trust region method is based on the concept of defining a region around the current
iteration where we trust the constructed quadratic model to be a suitable representation of
the objective function Q(a) in (2.6). Then, we select an appropriate step to approximate the
minimizer of the model within this region. In this method, both the direction and length of the
step are considered simultaneously. Typically, the direction of the step changes whenever the
size of the trust region is altered. If a step is deemed unacceptable, the size of the trust region
is reduced, and a new minimizer is sought. The choice of the trust region size plays a pivotal
role in the effectiveness of each step. If the trust region is too large, the minimizer of the
constructed quadratic model may be far from the minimizer of the objective function Q(a) in
(2.6). Conversely, if it’s too small, the trust region method might miss an opportunity to take
a substantial step that could bring it much closer to the minimizer of the objective function.
Thus, it’s essential to adjust the size of the region and retry. In practical computations, the size
of the region is often adjusted based on the trust region method’s performance in previous
iterations. As explained in [23], if the constructed quadratic model consistently provides
reliable results, producing good steps and accurately predicting the behavior of the objective
function along these steps, the size of the trust region can be increased to allow longer more
ambitious steps. However, if the quadratic model is consistently unreliable, then the size of
the trust region should be adjusted. After each such step, the size of the trust region should
be reconsidered and potentially changed. The details of the trust region method for solving
(2.6) are provided in the Appendix.
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3 Adaptive Orthogonal Basis Method for ComputingMultiple Solutions
of (1.5)

In this section we will focus on the main idea of the adaptive orthogonal basis method for
computing multiple solutions of (1.5) and its general computational flow. Let’s start with a
set of orthogonal bases denoted as {φi }n−1

i=0 , and the corresponding multiple solutions can be

repressed as u j
n−1 = ∑n−1

i=0 α
j
i φi ( j = 1, 2, . . .), where ’ j’ represents the j-th solution in the

current solution set and α
j
i represents the coefficient of the j-th solution. It is worth pointing

out that these coefficients satisfy the discretized system f (α j
0 , . . . , α

j
n−1) = 0 in (2.5). To

compute new solutions, a next basis function, denoted as φn , is introduced to {φi }n−1
i=0 , and we

aim to ensure that new solutions can be expressed as un(x) = ∑n
i=0 αiφi , with the condition

thatαn 
= 0, forcing the basis functionφn to play a nontrivial role in computing new solutions.
Note that the vector α = (α0, . . . , αn) and the basis function φn are unknowns to be solved.
To obtain them, an augmented system is constructed as follows:

G(α, φn) =

⎧⎪⎨
⎪⎩

f n(α)

αn
= 0,

(φi , φn) = 0, i = 0 . . . , n − 1,

(φn, φn) = 1.

(3.1)

In this context, our main aim is to a non-zero solution for αn , ensuring that the newly
introduced basis function φn significantly contributes to new solutions.

Next, wewill computemultiple solutions of (3.1). due to the high nonlinearity and themul-
tiplicity of the solution, solving multiple solutions of (3.1) can be extremely challenging. In
such cases, ourmethod is to leverage existing solution information (denoted asα j

0 , . . . , α
j
n−1),

i.e. they are used as the initial guess to solve the unknown vector a. Meanwhile, the variable
αn can be obtained by solving a polynomial algebraic equation, i.e. the roots of the poly-
nomial algebraic equation are the values of the variable αn . This simplification has many
advantages. On the one hand, it reduces the computational complexity. On the other hand,
it is especially useful when dealing with polynomials whose roots can be determined using
the eigenvalue method via a companion matrix. To be specific, we consider a general monic
polynomial of degree n given by:

p(t) = a0 + a1t + · · · + an−1t
n−1 + tn, (3.2)

where {ai }n−1
i=0 are real numbers. Consequently, the corresponding companionmatrix, denoted

as Cp , takes the form:

Cp =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

⎤
⎥⎥⎥⎥⎥⎦ . (3.3)

Then, the eigenvalues of the companion matrix Cp are the values of the variable αn , and this
can be efficiently computed by eig(Cp) in MATLAB.

Now we state the main idea of the adaptive orthogonal basis method as follows:

(1) Initialization: Generate Chebyshev–Gauss–Lobatto points on the domain �. Next, we
solve Eq. (2.6) by using the trust region method outlined in Sect. 2.2, and the resulting
numerical solution is denoted as u0. One can then set α0 = ‖u0‖2 and φ0 = u0/α0,
which forms a unit basis function.
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(2) Orthogonal Basis expansion iteration: Consider a solution set denoted as S =
(α1,α2, . . .). Each element in S corresponds to a solution of (1.5) with a set of basis
functions (φ0, . . . , φn−1), i.e. u j = ∑n−1

i=1 α
j
i φi . To obtain new solutions, the orthogo-

nal basis function φn should be introduced into {φi }n−1
i=1 . As a result, these new solutions

can be expressed as û j = ∑n
i=0 α

j
i φi . For each j-th solution, we compute αn and φn

by solving the augmented system described in Eq. (3.1) using the trust region method.
Subsequently, for each φn obtained, we calculate multiple solutions for αn by computing
the eigenvalues of the companion matrix.

(3) Local orthogonalization: When we compute φn , more than one basis function may
be obtained due to multiple solutions, where these basis functions (i .e.φn, . . . , φm) are
called as adaptive basis functions, and are not orthogonal. The Gram-Schmidt orthog-
onalization method is used to generate a set of adaptive orthogonal basis functions.
Afterward, we can expand a set of adaptive orthogonal basis functions {φ0, . . . , φn−m}.

(4) Filtering conditions: In the computational process, some spurious solutions may be
obtained.Based on the collocationmethod,we use the residual to eliminate these spurious
solutions, thereby reducing the computational cost.

(5) Stopping criteria: Our algorithm will terminate when no more basis can be computed
in the augmented system (3.1).

Next, we are ready to state a general computational flow for computing multiple solutions
of (1.5) as follows:

Step 1. Based on the spectral-collocation method to (1.5), a nonlinear algebraic system is
obtained and shown in (2.5). With the trust region method presented in Sect. 2, the
resulted numerical solution u(0) := α0φ0 can be obtained, where α0 = ‖u(0)‖2, and
φ0 is a unit basis function.

Step 2. Let û(0) := αφ0, and substitute it into (1.5). a polynomial algebraic equation on α

is obtained by using the spectral-Galerkin method. Based on the eigenvalues of the
corresponding companion matrix Cp , multiple solutions on α can be obtained, and

denoted by {α(0)
0 , α

(1)
0 , . . .}, which leads to û(0)

i = α
(i)
0 φ0 (i = 0, 1, . . .).

Step 3. We set û(1) = α1,0φ0 + α1,1φ1 to obtain multiple solutions with high precision,
where α1,0, α1,1 and φ1 are unknown variables to be solved. The augmented sys-
tem (3.1) is used to determine them, where the initial guess on α1,0 is taken from
{α(0)

0 , α
(1)
0 , . . .}. As a result, we can obtain multiple solutions, and denote them by

{α( j)
1,0, α

( j)
1,1, φ

( j)
1 } ( j = 1, 2, . . . , k).

Step 4. The Gram-Schmidt orthogonalization method is used to {φ( j)
1 }kj=1, which leads to

a set of adaptive orthogonal basis functions, denoted by {φ1, φ2, . . . , φk}. Subse-
quently, we set the numerical solution ũ(1) = α1,0φ0+ α̃1,1φ1, where α̃1,1 is a single
unknown to be solved. Similar to α in Step 2, α̃1,1 is obtained.

Step 5. To obtain multiple solutions with high precision, we will introduce {φi }ki=2 into ũ
(1),

i.e. ũ(1) = α1,0φ0 + α̃1,1φ1 + ∑l
j=2 α1, jφ j (2 ≤ l ≤ k), and repeat from Step 2 to

Step 4. Multiple solutions to (1.5) can be obtained.

Comparedwith the existingmethods, themain differences and advantages of our algorithm
reside in the following aspects:

• Enhanced Initial Guesses: In general, in the nonlinear iteration, a good initial guess
often plays a vital role in computing solutions for differential equations, particularlywhen
dealing with multiple solutions. Our algorithm introduces a significant improvement by
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generatingmultiple appropriate initial guesses based on the eigenvalues of the companion
matrix. Tobe specific, InStep2,α canbeobtained from the companionmatrixCp . Similar
situation is also seen for α̃1,1 in Step 4. This approach deviates from existing methods
like the search extension method [4] and enhances the reliability and diversity of a good
initial guess.

• Robustness with the Trust Region Method: Our approach is based on employing the
trust region method when iterating through nonlinear algebraic systems. The trust region
method allows for more relaxed and flexible choices of initial inputs. This feature proves
invaluable as the complexity of the nonlinear algebraic system increases, ensuring robust
performance even as more solutions are sought.

• Reduced the Computational Complexity: In our algorithm, we dynamically compute
the orthogonal basis by solving the augmented system instead of relying on pre-defined
basis functions (see Step 4). With a good initial guess, this adaptive approach reduces
the basis function set, and doesn’t increase the number of unknown variables, indicating
that the computational complexity will be reduced.

In summary, our adaptive orthogonal basis algorithm not only provides improved initial
guesses and computational efficiency but also leverages the trust region method for robust
convergence. Additionally, based on adaptive orthogonal basis functions, our algorithm can
reduce the computational complexity. These advantages set our algorithm apart from existing
algorithms and establish it as a valuablemethod for solving equationswithmultiple solutions.

4 Numerical Experiments

In this section, our primary objective is to assess and demonstrate the effectiveness of our
algorithm. We present one-dimensional and two-dimensional examples in Sects. 4.1 and 4.2,
respectively. All code execution is performed on a server equippedwith an Intel(R) Core(TM)
i7-11700F processor running at 2.50 GHz and 32GB of RAM, utilizing MATLAB (version
R2020b).

4.1 1D Examples

Example 1 We consider the following nonlinear boundary value problem:{
u2xx − (1 + ex )uxx + ex = 0, x ∈ (0, 1),

u(0) = u(1) = 0.
(4.1)

Upon solving the algebraic differential equation, we obtain two linear differential equations:
uxx = 1 and uxx = ex . Consequently, we have two corresponding solutions:

u1 = x2

2
− x

2
and u2 = ex − (e − 1)x − 1. (4.2)

Based on the adaptive orthogonal basis method presented in Sect. 3, the corresponding
flowchart is shown in Fig. 1, and some further explanations are presented as follows:

• In Step 3, when applying the spectral Legendre–Galerkin method, it is essential to trans-
form the function values initially computed at Chebyshev–Gauss–Lobatto points (as
described in Step 2) into values at Legendre-Gauss-Lobatto points. The transformation
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Fig. 1 The flow chart of the adaptive orthogonal basis method for computing multiple solutions of (4.1). Two

basis functions, φ0 and φ1, form two solutions, û(0)
1 and û(1)

1 , respectively, in Step 4. A notable difference

between û(0)
1 and û(1)

1 lies in the coefficients of the basis function φ1. Specifically, the coefficient of φ1 for

û(0)
1 is considerably smaller than that for û(1)

1 . This suggests that the second solution, û(1)
1 , may be formed by

extending the first solution space φ0 through the inclusion of an adaptive basis function, φ1

Fig. 2 Illustration of Chebyshev–Legendre transforms

process is depicted in Fig. 2. It is noteworthy that various fast, straightforward, and
numerically stable algorithms for Chebyshev–Legendre transforms can be found in the
literature, including references such as [3, 12, 22, 24, 25].

• In Step 4, our primary objective is to enhance the accuracy of multiple solutions by
increasing the number of standard orthogonal basis functions, such as φ1. In other words,
a sequence of standard orthogonal basis functions φi with i = 1, 2, . . . can be systemati-
cally increased until the predefined stopping criteria are satisfied. Additionally, the values
α

(i)
0 obtained in Step 3 can serve as initial guesses for α1,0 in the process of solving (3.1).

In Fig. 3a, we plot the numerical errors for these two solutions. In Fig. 3b, we present the
convergence test for both solutions. The first solution, û(0)

1 , demonstrates machine accuracy

when N is very small, while the second solution, û(1)
1 , exhibits spectral accuracy. This dis-

tinction arises due to the notably low algebraic degree of the first solution, as evident in u1
from (4.2). Furthermore, when varying N across values of 5, 10, 15, and 20, our algorithm for
computing the solutions showcases remarkable computational efficiency, as demonstrated in
Table 1.
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Fig. 3 Two solutions and its convergence for (4.1)

Table 1 Computational times for
Example 1 with different N

N 5 10 15 20

Time (s) 0.48 0.52 0.53 0.60

Example 2 The following boundary value problem is considered:{
u2xx + uxx − 2 = 0, x ∈ (0, 1),

u(0) = 0, u(1) = 0,
(4.3)

which has two solutions, i.e.,

u+ = x2

2
− x

2
, u− = −x2 + x . (4.4)

Obviously, we can conclude u+
u− = − 1

2 . Employing our algorithm, we identify an adaptive

basis function φ0, as shown in Fig. 4a. Additionally, we determine two coefficients: α
(0)
0 =

−0.2582 and α
(1)
0 = 0.1291, from which we form two numerical solutions û(i)

0 = α
(i)
0 φ0 for

i = 0, 1. A comparison between the exact and numerical solutions is presented in Fig. 4b.
In Table 2, we provide details on numerical errors, residuals, and computational times for
the two numerical solutions (labeled as I and II). These results affirm the feasibility and
effectiveness of our algorithm.

Example 3 Next we consider the following boundary value problem with multiple solutions
[13]: {

uxx = λu2(u2 − p), x ∈ (0, 1),

u′(0) = 0, u(1) = 0.
(4.5)

Here, the parameters λ and p are introduced. Employing our algorithm with λ = 1 and
p = 18, we obtain multiple solutions, as depicted in Fig. 5a. These numerical solutions
uN (x) can be expressed using the following adaptive basis functions:

uN (x) =
6∑

i=0

α̃6,iφi . (4.6)
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Fig. 4 Multiple solutions of (4.3) by using our method

Table 2 Performance of our algorithm for solving Eq. (4.3)

N Solution I Solution II Time (s)

Error Residual Error Residual

5 5.5511e−17 2.6645e−15 2.7756e−17 1.3323e−15 0.3187

10 3.3307e−16 1.7319e−14 1.6653e−16 6.6613e−15 0.3310

15 2.4980e−16 6.5281e−14 1.5265e−16 2.1316e−14 0.3511

The adaptive basis functions and coefficients α̃6,i as defined in (4.6) are illustrated in Fig. 6
and tabulated in Table 3, where the coefficients above the diagonal are very small, indicating
that the difference between these solutions can be reflected in the adaptive basis functions. In
addition, our algorithm effectively excludes some spurious solutions by applying the filtering
conditions, leading to excellent agreement with the solutions previously reported in [15]. A
similar observation can be made when setting λ = −π2/4 and p = 10, as shown in Fig. 7
and Table 4.

4.2 2D Examples

Example 4 We first consider the following 2D example:

{
�u + u2 = 800 sin(πx) sin(π y) in � = (0, 1) × (0, 1),

u = 0 on ∂�.
(4.7)

By employing our algorithm, we have successfully computed 10 solutions, as depicted in
Fig. 9. This results are in line with the findings of Breuer et al. in their work [21], where it
was established that Eq. (4.7) has at least four distinct solutions when considering rotational
symmetry. More specifically, solutions III–VI in Fig. 9 can be rotated at specific angles to
transform into one another, a similar characteristic symmetry shared by solutions VII-X.
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Fig. 5 Multiple solutions of (4.5)with different (λ, p), and some spurious solutions (blue line) before applying
filtering conditions

Fig. 6 Basis functions computed by our algorithm for solving (4.5) with λ = 1 and p = 18

The adaptive basis functions generated by our algorithm are shown in Fig. 8, and the
corresponding coefficients α̃9,i are listed in Table 5. The computational time required is
157s, with a residual error of less than 10−10.

Example 5 Weconsider the steady-stateAllen-Cahn equation [20], describedby the following
equations: ⎧⎪⎨

⎪⎩
−ε�u + u3 − u = 0, (x, y) ∈ � = (0, 1)2,

u(0, y) = u(1, y) = 1, y ∈ (0, 1),

u(x, 0) = u(x, 1) = −1, x ∈ (0, 1).

(4.8)

Here, ε serves as a parameter that characterizes the balance between free surface tension
and the potential term in the free energy. Here our main concern is that multiple solutions
are computed when ε → 0. To better show our numerical results, three cases (i.e. ε =
1.6 × 10−3, 1.0 × 10−6 and 1.0 × 10−8) are mainly considered. When ε = 1.6 × 10−3,
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Table 3 Numerical results of (4.5) with λ = 1, p = 18

Coefs
Sol.ind α̃6,0 α̃6,1 α̃6,2 α̃6,3 α̃6,4 α̃6,5 α̃6,6 Residual Time (s)

I 0.16 3.45e−15 3.36e−15 −4.05e−16 3.87e−16 −5.55e−17 1.88e−16 2.14e−12 10.83

II 5.17 1.51 1.07e−13 1.83e−15 −1.40e−14 −9.70e−15 3.07e−14 4.15e−11

III −2.57 0.93 1.12 1.18e−12 −1.82e−12 −4.73e−13 4.85e−12 1.32e−11

IV −0.90 −3.76 −0.78 1.19 −9.92e−06 −2.44e−06 −2.00e−05 4.10e−12

V 0.08 3.85 1.83 −0.35 0.34 −4.70e−11 −6.54e−11 2.13e−11

VI 1.08 −4.57 0.01 0.70 0.15 0.43 −5.07e−06 1.55e−11

VII −1.28 2.72 1.26 −0.24 0.04 −0.01 0.06 8.34e−11

Fig. 7 Basis functions computed by our algorithm for solving (4.5) with λ = −π2/4 and p = 10

three solutions for (4.8) are computed, and plotted in Fig. 10. The adaptive basis functions
are depicted in Fig. 11 and corresponding coefficients, denoted as α̃2,i , are documented in
Table 6. Next, we make a test with ε = 1.0 × 10−6, many solutions can be computed. For
simplicity, here twelve solutions are shown in Fig. 12. Their adaptive basis functions are
presented in Fig. 14, and the associated coefficients, denoted as α̃11,i , are listed in Table 7.
To check the behavior of these solutions near the boundaries, the pictures of solutions I and
III near the boundaries are presented in Fig. 13, where the boundary layer can be observed.
Finally, when ε = 1.0 × 10−8, more numerical solutions can be found compared with the
case ε = 1.0× 10−6. For simplicity, here twenty solutions are shown in Fig. 15. In addition,
in some published literature, e.g. [17], it has been pointed out that when ε → 0, there are
more and more solutions to (4.8), which is consistent with our numerical results.
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Table 4 Numerical results of (4.5) with λ = −π2/4, p = 10

Coefs
Sol.ind α̃6,0 α̃6,1 α̃6,2 α̃6,3 α̃6,4 α̃6,5 α̃6,6 Residual Time (s)

I 0.12 8.43e−15 7.24e−15−1.19e−15 3.28e−16 4.89e−16 1.03e−15 8.59e−13 17.36

II 3.86 1.14 5.78e−14−5.47e−15−4.23e−15 7.49e−15 −6.80e−15 4.44e−11

III −1.90 0.69 0.84 −3.07e−14−2.79e−15 -8.00e−14−1.00e−13 1.16e−11

IV −0.69−2.77 −0.59 0.90 −1.44e−06−1.04e−06 −6.70e−07 2.89e−11

V 0.87−3.40 0.04 0.50 0.36 2.31e−07 −3.50e−07 2.60e−11

VI −0.97 2.00 0.94 - 0.18 2.36e−04 0.05 1.21e−13 7.67e−11

VII 0.11 2.88 1.39 − 0.27 0.08 0.14 0.21 3.04e−11

Fig. 8 Basis functions computed by our algorithm for solving (4.7)

Example 6 Our final example explores the steady-state Gray-Scott model [14], described by
the following equations:⎧⎪⎨

⎪⎩
DA�A = −SA2 + (μ + ρ)A, on � = (0, 1) × (0, 1),

DS�S = SA2 − ρ(1 − S), on � = (0, 1) × (0, 1),
∂A
∂n = ∂S

∂n = 0, on ∂�.

(4.9)

In this example, we fix the parameters as follows: DA = 2.5 × 10−4, DS = 5 × 10−4,
ρ = 0.04, and μ = 0.065. Our algorithm obtains eight solutions about A(x, y), which
are graphically presented in Fig. 16, alongside their adaptive basis functions in Fig. 17. The
associated coefficients, denoted as α̃7,i , are listed in Table 8.

5 Concluding Remarks

In this paper, we present an innovative approach for computing multiple solutions of non-
linear differential equations. Our method not only generates multiple initial estimates for
solving differential equations with polynomial nonlinearities but also adaptively orthogo-
nal basis functions to solve the discretized nonlinear system. Through a series of numerical
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Fig. 9 Multiple solutions of (4.7) by using our algorithm

experiments, we demonstrate the efficiency and robustness of this newly developed adaptive
orthogonal basis method. The convergence analysis of this proposed method will be consid-
ered as our future work, although the trust region method can be guaranteed to have quadratic
convergence in each iteration (as detailed in the appendix).
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Fig. 10 Multiple solutions of (4.8) by using our algorithm with ε = 1.6 × 10−3

Fig. 11 Basis functions computed by our algorithm for solving (4.8) with ε = 1.6 × 10−3

Table 6 Numerical results of (4.8) with ε = 1.6 × 10−3

Coefs
Sol.ind α̃2,0 α̃2,1 α̃2,2 Residual Time (s)

I 1.3358 −6.1862e−17 −3.4779e−17 5.2625e−14 32.74

II 1.8557 −3.0235 2.0258e−16 3.9191e−14

III 1.8020 −1.4763 −1.1867 6.7391e−14
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Fig. 12 twelve solutions of (4.8) with ε = 1.0 × 10−6

Fig. 13 The behavior of solutions I and III near the boundaries with ε = 1.0 × 10−6
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Fig. 14 Basis functions of (4.8) with ε = 1.0 × 10−6
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Fig. 15 twenty solutions of (4.8) with ε = 1.0 × 10−8
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Fig. 16 Multiple solutions about A(x, y) of (4.9) by using our algorithm

Fig. 17 Basis functions about A(x, y) for solving (4.9) by our algorithm

Appendix

We present the detailed process of the trust region method to solve (2.6). For this purpose, we
introduce a region around the current best solution, and approximate the objective function
by a quadratic form which boils down to solving a sequence of trust-region subproblems:

min
s∈Bhk

q(k)(s) := Q(ak) + g(ak)�s + 1

2
s�G(ak)s, k ≥ 0, (5.1)

where the trust regionBhk := {s ∈ R
n : ‖s‖ ≤ hk}.When hk is given and sk is theminimizer

of q(k)(s) in (5.1), we can update ak+1 = ak + sk . Obviously, it is one of the most critical
steps to choose a proper hk at each iteration. Based on a good agreement between q(k)(sk)
and the objective function value Q(ak+1), we should choose hk as large as possible. To be
specific, we define a ratio

rk = Q(ak) − Q(ak+1)

q(k)(0) − q(k)(sk)
. (5.2)
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The ratio rk is an indicator for expanding and contracting the trust region. If rk is negative,
the current value of Q(ak) is less than the new objective value Q(ak + sk), consequently the
step should be rejected. If rk is close to 1, it means there is a good agreement between the
model q(k) and the objective function Q over this step, we can expand the trust region for
the next iteration. If rk is close to zero, the trust region should be contracted. Otherwise, we
do not alter the trust region at the next iteration. Moreover, the process is also summarized
in the following algorithm 1.

Algorithm 1 - The trust region method
Input: Given a0, ε > 0, 0 < δ1 < δ2 < 1, 0 < τ1 < 1 < τ2 and h0 = ‖g0‖
Input: Initial solution set S ← the empty set ∅
Output: S
1: For k = 0, 1, 2, . . .

2: Compute gk and Gk ;
3: If ‖gk‖ ≤ ε and |Q(ak)| ≤ ε, stop;
4: Approximately solve the subproblem (5.1) for sk ;
5: Compute Q(ak + sk) and rk . If rk ≥ δ1, then ak+1 = ak + sk ; Otherwise,

set ak+1 = ak ;
7: If rk < δ1, then hk+1 = τ1hk ;

If rk > δ2 and ‖sk‖ = hk , then hk+1 = τ2hk ;
Otherwise, set hk+1 = hk ;

8: end
9: return S

For simplicity, in general we choose ε = 10−13, δ1 = 0.25, δ2 = 0.75, τ1 = 0.5, and
τ2 = 2 throughout the paper. Moreover, in the Algorithm 1 (see Line 4), the subproblem
(5.1) needs to be solved. Here the so-called dogleg method (see [11, 26]) is used to solve it,
and the process is as follows: Let s := ak − dk gk , and substituting it into (5.1) yields

q(k)(ak − dk gk) = Q(ak) − dk‖gk‖22 + 1

2
d2k g

�
k Gk gk .

Based on the exact line search, the step size dk becomes

dk = ‖gk‖22
g�
k Gk gk

.

Consequently the corresponding step along the steepest descent direction is

sCk = −dk gk = − g�
k gk

g�
k Gk gk

gk .

On the other hand, the Newtonian step is

sNk = −G−1
k gk .

If ‖sCk ‖2 = ‖dk gk‖2 ≥ hk , the solution of (5.1) can be obtained, i.e.,

sk = − gk
‖gk‖2

hk, (5.3)

which leads to ak+1 = ak + sk . If ‖sCk ‖2 < hk and ‖sNk ‖2 > hk , a dogleg path consisting of
two line segments is used to approximate s in (5.1), i.e.,

sk(λ) = sCk + λ(sNk − sCk ), 0 ≤ λ ≤ 1. (5.4)
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Fig. 18 Exact trajectory and dogleg approximation

Obviously, when λ = 0, sk(λ) reduces to the steepest descent direction. While λ = 1, it
becomes the Newtonian direction. To exactly obtain λ in (5.4), we will solve the following
equation:

‖sCk + λ(sNk − sCk )‖2 = hk .

As a result, we have

ak+1 = ak + sk(λ) = ak + sCk + λ(sNk − sCk ),

Otherwise, we choose
sk = sNk = −G−1

k gk . (5.5)

In summary, with (5.3), (5.4) and (5.5), the solution sk in (5.1) becomes

sk =

⎧⎪⎨
⎪⎩

− gk‖gk‖2 hk, if ‖sCk ‖2 ≥ hk, (I)

sCk + λ(sNk − sCk ), if ‖sCk ‖2 < hk and ‖sNk ‖2 > hk, (II)

−G−1
k gk, if ‖sCk ‖2 < hk and ‖sNk ‖2 ≤ hk . (III)

(5.6)

Next, we remark the trust region method for solving nonlinear algebraic system (2.5).
As mentioned in [26], the trust region enjoys the desirable global convergence with a local
superlinear rate of convergence as follows.

Theorem 5.1 Assume that

(i) the function Q(a) is bounded below on the level set

H := {a ∈ Rn : Q(a) ≤ Q(a0)}, ∀ a0 ∈ R
n, (5.7)

and is Lipschitz continuously differentiable in H ;
(ii) the Hessian matrixes G(x(k)) are uniformly bounded in 2-norm, i.e., ‖G(ak)‖ ≤ β for

any k and some β > 0.

If g(ak) 
= 0, then
lim
k→∞ inf ‖g(ak)‖ = 0. (5.8)

Moreover, if g(a∗) = 0, and G(a∗) is positive definite, then the convergence rate of the trust
region method is quadratic.

Remark 5.1 When k is large enough, the trust regionmethodbecomes theNewtonian iteration.
As a result, it has the same convergence rate as the Newtonian method. ��
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Remark 5.2 In practice, the gradient and Hessian matrices might be appropriately approx-
imated by some numerical means. We refer to Zhang et al. [37] for such derivative-free
methods for (2.6) with f being twice continuously differentiable, but none of their first-
order or second-order derivatives being explicitly available. ��
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